FreeRTOS: A PSoC4 FreeRTOS Port

Summary

In my work life, I am working on some systems that will require more complicated firmware architectures built using real time operating systems.  As I need to get more familiar with RTOSs, I thought that I would go ahead and start using them in my PSoC 4 projects.  The logical one to start with is FreeRTOS.  In this article I will take you through the steps to create a PSoC4 FreeRTOS port.

  1. Introduce FreeRTOS
  2. Execute a PSoC4 FreeRTOS Port
  3. Create a PSoC4 FreeRTOS Test Project (the blinking LED)

FreeRTOS Background

FreeRTOS is a light weight, open-source, real time operating systems for embedded systems that was developed by RealTime Engineers.  Their basic business plan is to sell consulting and support services to semiconductor companies their customers.  All of the source code is available (mostly in plain C) and easy to use.  In addition there are ports to 35 MCUs (including all of the Cypress ARM chips).  FreeRTOS is frequently cited as the most popular embedded RTOS which is easy to understand as I have found it easy to use and very stable.

Execute a PSoC4 FreeRTOS Port

The port of FreeRTOS to PSoC4 is actually pretty trivial, once you figure it out.  But I suppose that is how things often go.  FreeRTOS comes preconfigured with a GCC version of an ARM Cortex-M0 port.  All that needs to be done is to hook the basic port to the correct PSoC4 systems.  There are generic porting instruction on the FreeRTOS site but these are my PSoC specific steps:

    1. Download FreeRTOS V9.0.0
    2. Add the include directories “FreeRTOS/Source/include” and “FreeRTOS/Source/portable/GCC/ARM_CM0” to your project by right clicking on the project and editing “Build Settings…”  You should add those directories to the “Additional Include Directories”Configuring the PSoC 4 FreeRTOS build settings
    3. Right click on the project and “Add Existing Item” so that you can add the .c & .h files from FreeRTOS/Source/portable/GCC/ARM_CM0  to your projectAdd the PSoC4 FreeRTOS Files to Project
    4. Add the .c files from FreeRTOS/Source/ to your project
    5. Add the .h files from FreeRTOS/Source/include to your project
    6. Add “heap_1.c” (or which ever memory manager you want) from FreeRTOS/Source/portable/MemMang
    7. Create the “setupFreeRTOS” function to install the Interrupt Service vectors required by FreeRTOS.

8. Create the FreeRTOSConfig.h First, add a new file called FreeRTOSConfig.h file to the project (right click on the project and “add new item”.  This file contains a bunch of CPP macros to setup FreeRTOS.  You can get this file by copy/pasting from the the linked website into your blank FreeRTOSConfig.h file.
9. Modify FreeRTOSConfig.h I made the following changes to the default configuration file:

Create a PSoC4 FreeRTOS Test Project

The example project is a simple blinked LED.  It starts with a “Task” function which I call LED_Task.  This just reads the current value of the RED Led pin, inverts it, and writes it back.  Then it does and RTOS delay of 500 ms.  The main look just turns on the interrupt system, initializes the RTOS, Creates the LED Task, then starts the scheduler.  The Scheduler will never return.